

The armature being supported at both ends, the majority of two-pole tachogenerators with own bearings offer the possibility to integrate further devices. The combinations are characterized by a common housing (logo 1+1=1®) and commonly feature a **common shaft** to avoid a spring-mass system with a low resonant frequency. This offers decisive advantages for driving engineering applications:

- Tacho + Tacho (Twin tachogenerator) with two separate tachogenerator voltages
- Tacho/Twin Tacho + Incremental encoder
- Tacho/Twin Tacho + Overspeed switch.

Twin-Tachos

Twin-Tachos (twin-tachogenerators) are produced with two electrically isolated tachogenerator voltages, whereby the windings are located in the slots of a common armature. The commutators are arranged on both sides of the armature (Figure 27). The tachogenerator voltages are available in the terminal box at terminals 1A1 and 1A2 (1st system) and 2A1 and 2A2 (2nd system) (Figure 5); they can be different or identical for function monitoring (redundancy): if they should deviate, i.e. cable break, a safety function is activated.

Figure 27: Twin tachogenerator with two winding system (TDPZ 0,2) – here on a drive of a cold forming press.

Tacho/Twin-Tacho + Digital-Tacho (Incremental encoder)

Numerous drive applications require in addition to speed regulation also superimposed position control (Figure 1 on page 8). HÜBNER offers three variants of this combination, adapted to meet specific applications and requirements:

- The Tacho or Twin-tacho with bearings at both ends is the primary device with the Digital-Tacho (incremental encoder) attached:
- Example: TDP 0,2 + OG 9 (Figure 28).

Figure 28: This combination of Analog-Tacho + Digital-Tacho (TDP 0,2 + OG 9) is a classic: Introduced to the market in 1978, it is widely used today employing modern technology.

- The Digital-Tacho (incremental encoder) with bearings at both ends is the primary device with the Analog-Tacho attached:
- Example: FOG 9 + GT 7 (\$\frac{1}{2}\$) Figure 29).

Figure 29: The combination of Digital-Tacho + Analog-Tacho (FOG 9 + GT 7) harmonizes per-

- The Tacho or Twin-Tacho has a non-drive end flange and a rear shaft on which the Digital-Tacho (or foreign encoder) with own bearings is mounted via a rear support housing and coupling:
- Example: TDP 0,2 + OG 60 (Figure 30).

Figure 30: The rear shaft of the Analog-Tacho drives via a coupling within a rear support housing the Digital-Tacho with own bearings (TDP 0,2 + OG 60 or separate encoder).

HÜBNER develops and produces **Digital-Tachos** in a wide range of variants which, based on decades of experience with rugged dc tachogenerators, are similarly characterized by high mechanical and electrical ruggedness:

- Solid light metal housing with high vibration and shock resistance.
- Push-pull scanning with optical semiconductors, temperature and ageing compensation.
- Output signals with high-volt level HTL or 5 V level TTL according to RS-422.
- Output driver, depending on size, with short-circuit-proof power transistors or IC.

Detailed information with application examples are provided in our 48 pages publication

Information for the User
20 Years Competence in HeavyDuty:

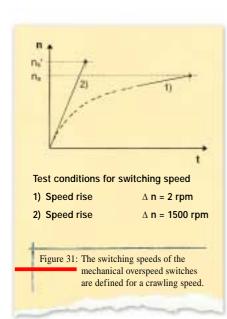
Digital-Tachos (Incremental Encoders) **Sinus-Tachos** (Sinewave Encoders),

which is available on our website www.huebner-berlin.de or can be sent to you on request.

Tacho/Twin-Tacho + Overspeed switch

The Tachos or Twin-Tachos (and several HÜBNER Digital-Tachos) are available as a combination with common shaft and integral mechanical or electronic overspeed switch, e.g.

TDP 0,2 + FSL (mechanical with *one* switching speed) or


TDP 0,2 + ESL ... (electronic with *one* or *three* switching speeds)

(Technical Data).

The overspeed switch is usually used for speed **safety monitoring**:

Mechanical overspeed switches (centrifugal switches)

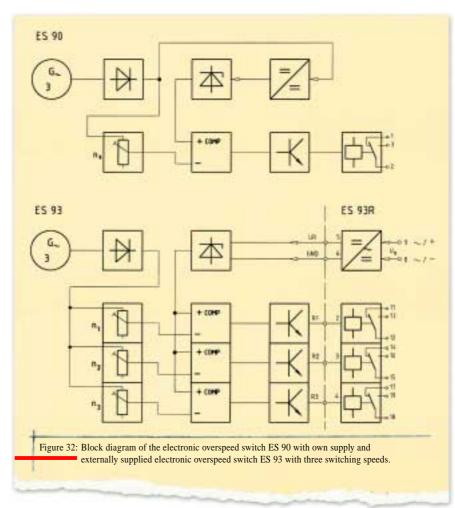
They effect an *rapid* switching operation at a factory set switching speed without auxiliary electrical power. Centrifugal force actuate a switch with isolated make and break contacts. Reseting takes place automatically at an about 40 % lower speed (speed hysteresis). The **switching speed** n_s is defined for a **slow** speed change (\triangleright Figure 31). At high acceleration, the switching speed shifts to a higher value n_s '. The hysteresis between clockwise and counter-clockwise rotation is about 3 %.

The **operating speed** should be below 90 % of the switching speed in the case of heavily vibrating drives. The **maximum speed** specified in the data sheet must not be exceeded for safety reasons. A switching operation from high to low speeds is not available on the mechanical overspeed switches.

Leaflet FS 90:

When combined with an Analogor Digital-Tacho, the FS 90 has the designation **FSL**.

For lower switching speeds a **speed-up gear box** is available.


Electronic overspeed switches with one or three adjustable switching speeds

The factory set switching speeds can be readjusted with potentiometers in the terminal box.

The switching operation is effected **abruptly** in both directions of rotation. Switching back takes place **automatically** (speed hysteresis).

⇒ Leaflet ES 90 · ES 93:

When combined with an Analog- or Digital-Tacho, the electronic overspeed switch with *one* switching speed has the designation **ESL 90** and with *three* switching speeds, the designation **ESL 93**.

The **ES 90** has one relay output with isolated changeover contact and is powered internally via an integral AC tachogenerator, so that an external voltage supply is unnecessary (Figure 32 above).

The **ES 93** has three independent transistor outputs and in conjunction with the relay module **ES 93 R**, three floating relay contacts with change-over contact. The three relays are changed over upon interruption of the supply or signal cables.

The relay module ES 93 R supplied with direct or alternating voltage also supplies the ES 93 (Figure 32 below).

As a supplement to the mentioned overspeed switches, HÜBNER has developed the electronic overspeed switch **ES 100** with particularly low switching speeds, provided with the EURO flange® B10 and shaft Ø 11 mm and is connected to the drive via a coupling (Figure 2 on page 8).

The overspeed switches used in the combinations cover the following switching speed ranges:

 FS 90 (FSL)
 700 ... 4,900 rpm

 ES 90 (ESL 90)
 650 ... 6,000 rpm

 ES 93 (ESL 93)
 3 x 200 ... 5,000 rpm

 ES 100
 110 ... 500 rpm

For **safety-relevant** applications, combinations of mechanical and electronic overspeed switches are available.

HÜBNER ELEKTROMASCHINEN AG

P. O. Box 61 02 71, D-10924 Berlin Planufer 92 b, D-10967 Berlin

Phone + 49-(0) 30-69003-0 Telefax + 49-(0) 30-69003-104

http://www.huebner-berlin.de eMail: marketing@huebner-berlin.de

The height of precision in speed and position: HÜBNER Technology.

LongLife® DC Tachogenerators with the patented silver track embedded into the commutator. We support this with a two year guarantee.

Digital-Tachos (incremental encoders) in **HeavyDuty**® technology: rugged electrical and mechanical construction.

LowHarmonics® **Sinus-Tachos**: Sinewave signals with

significantly low harmonics – a new level of precision.

Overspeed switches:

mechanically by centrifugal actuator or electronically with own or external voltage supply.

ExtendedSpeed[®] angular and linear acceleration sensors with no speed limit.

Combinations: Digital-Tachos, dc tachogenerators or overspeed switches in one single housing with continuous shaft.

Δ 1